Mixing MIR inequalities with two divisible coefficients

نویسندگان

  • Miguel Constantino
  • Andrew J. Miller
  • Mathieu Van Vyve
چکیده

This paper is a polyhedral study of a generalization of the mixing set where two different, divisible coefficients are allowed for the integral variables. Our results generalize earlier work on mixed integer rounding, mixing, and extensions. They also directly apply to applications such as production planning problems involving lower bounds or start-ups on production, when these are modeled as mixed-integer linear programs. We define a new class of valid inequalities and give two proofs that they suffice to describe the convex hull of this mixed-integer set. We give a characterization of each of the maximal faces of the convex hull, as well as a closed form description of its extreme points and rays, and show how to separate over this set in O(n logn). Finally, we give several extended formulations of polynomial size, and study conditions under which adding certain simple constraints on the integer variables preserves our main result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On n-step MIR and partition inequalities for integer knapsack and single-node capacitated flow sets

Pochet and Wolsey [Y. Pochet, L.A. Wolsey, Integer knapsack and flow covers with divisible coefficients: polyhedra, optimization and separation. Discrete Applied Mathematics 59(1995) 57–74] introduced partition inequalities for three substructures arising in various mixed integer programs, namely the integer knapsack set with nonnegative divisible/arbitrary coefficients and two forms of single-...

متن کامل

Facets for continuous multi-mixing set with general coefficients and bounded integer variables

Bansal and Kianfar introduced continuous multi-mixing set where the coefficients satisfy the so-called n-step MIR conditions and developed facet-defining inequalities for this set. In this paper, we first generalize their inequalities for the continuous multi-mixing set with general coefficients (where no conditions are imposed on the coefficients) and show that they are facetdefining in many c...

متن کامل

Mixed n-step MIR inequalities: Facets for the n-mixing set

Günlük and Pochet [O. Günlük , Y. Pochet: Mixing mixed integer inequalities. Mathematical Programming 90(2001) 429-457] proposed a procedure to mix mixed integer rounding (MIR) inequalities. The mixed MIR inequalities define the convex hull of the mixing set {(y, . . . , y, v) ∈ Z × R+ : α1y + v ≥ βi, i = 1, . . . ,m} and can also be used to generate valid inequalities for general as well as se...

متن کامل

9811 Mixing Mixed - Integer Inequalities

Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities. Given a mixed-integer region S and a collection of valid “base” mixed-integer inequalities, we develop a procedure for generating new vali...

متن کامل

Mixing mixed-integer inequalities

Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities. Given a mixed-integer region S and a collection of valid \base" mixed-integer inequalities , we develop a procedure for generating new val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2010